Sketch the curve by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced at *t* increases.

1)
$$x=1+\sqrt{t}$$
, $y=t^2-4t$, $0 \le t \le 5$

2)
$$x = 2\cos t$$
, $y = t - \cos t$, $0 \le t \le 2\pi$

Eliminate the parameter to find a Cartesian equation of the curve.

3)
$$x = 1 + 3t$$
, $y = 2 - t^2$

$$y = -\frac{1}{9}(x-1)^2 + 2$$

4)
$$x = t^2$$
, $y = t^3$

$$x = y^{2/3}$$

5)
$$x = \sin \theta$$
, $y = \cos \theta$, $0 \le \theta \le \pi$

$$x^2 + y^2 = 1, \quad x \ge 0$$

6)
$$x = \sin^2 \theta$$
, $y = \cos^2 \theta$

$$x + y = 1, \quad 0 \le x \le 1$$

7)
$$x = \ln t$$
, $y = \sqrt{t}$, $t \ge 1$ $y = e^{x/2}$, $x \ge 0$

$$y = e^{x/2}, \quad x \ge 0$$

Match the graphs of the parametric equations x = f(t) and y = f(t) in (a)-(d) with the parametric curves labeled I-IV. a) III b) I c) IV d) II

Page 4 of 6

8) Match the parametric equations with the graphs labeled I-VI. (Do not use a graphing device.)

- a) $x = t^3 2t$, $y = t^2 t$
- $y = 2 t^2$ b) $x = t^3 - 1$,
- c) $x = \sin 3t$, $y = \sin 4t$
- d) $x = t + \sin 2t$, $y = t + \sin 3t$
- e) $x = \sin(t + \sin t)$, $y = \cos(t + \cos t)$ \boxed{I}
- f) $x = \cos t$, $y = \sin(t + \sin 5t)$

9) Use a graphing device to graph the curves $y = x^5$ and $x = y(y-1)^2$ and find their points of intersection correct to one decimal place.

10) Suppose that the position of one particle at time t is given by:

$$x_1 = 3\sin t$$
, $y_1 = 2\cos t$, $0 \le t \le 2\pi$

and the position of a second particle is given by:

$$x_2 = -3 + \cos t$$
, $y_2 = 1 + \sin t$, $0 \le t \le 2\pi$

a) Graph the paths of both particles. How many points of intersection are there?

$$(-3,0)$$
 and $(-2.1, 1.4)$

- b) Are any of these points of intersection collision points? In other words, are the particles ever at the same place at the same time? If so, find the collision points. $t = \frac{3\pi}{2}$
- c) Describe what happens if the path of the second particle is given by:

$$x_2 = 3 + \cos t$$
, $y_2 = 1 + \sin t$, $0 \le t \le 2\pi$

Intersection: (3,0) and (2.1,1.4). No collision points.